Reinforcement Learning of Traffic Light Controllers Adapting to Traffic Congestion

نویسندگان

  • Merlijn Steingrover
  • Roelant Schouten
  • Stefan Peelen
  • Emil Nijhuis
  • Bram Bakker
چکیده

Due to the increasing amounts of traffic in and around urban areas there is a growing need for intelligent traffic lights that optimize traffic flow. In this paper we describe the optimization of traffic light controllers using a multi-agent, model-based reinforcement learning or approximate real-time dynamic programming approach. Our methods optimize individual traffic lights locally, but the optimization takes into account traffic congestion at neighboring traffic lights, such that there is implicit cooperation between them. We show, using experiments performed with a traffic simulator, that this approach outperforms existing methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doas 2006 Project: Reinforcement Learning of Traffic Light Controllers Adapting to Accidents

Last year we started a project concerned with intelligent traffic control. Using a simulator that models urban road traffic, we developed an improved traffic light controller based on measuring traffic congestion on the roads and reinforcement learning. This year an important focus will be on dealing with traffic accidents. In this student project we want to investigate a learning traffic contr...

متن کامل

Traffic Light Control by Multiagent Reinforcement Learning Systems

Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of traffic light controllers. Such techniques are attractive because they can automatically discover efficient con...

متن کامل

Intelligent Traffic Light Control

Vehicular travel is increasing throughout the world, particularly in large urban areas. Therefore the need arises for simulating and optimizing traffic control algorithms to better accommodate this increasing demand. In this paper we study the simulation and optimization of traffic light controllers in a city and present an adaptive optimization algorithm based on reinforcement learning. We hav...

متن کامل

An Optimal Dynamic Control Method for an Isolated Intersection Using Fuzzy Systems

Traffic flow systems are nonlinear and uncertain, so it is very difficult to find their optimal points. In traditional traffic control systems, the traffic lights of crossings change in a fixed time period that is not optimal. On the other hand, most proposed systems are sufficiently capable of coping with the uncertainties of traffic flow. To solve this problem, there is a need to develop expe...

متن کامل

Feedback Control of Traffic Signal Network of Less Traffic Sensors by Help of Machine Learning

As a way of resolving vehicle congestion, there is a feedback control approach which models a traffic network as a discrete dynamical system and derives feedback gain for controlling green light times of each junction. Since the input is the sensory observed traffic flow of each link, and since the state equation models both the topology and the parameters of the network, it is effective for ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005